
 SQL I

 Helena Bengtsson, SVT page 1

SQL – Exploring data

SQL, Standard Query Language, is a language constructed to query databases. In my mind, working

with SQL really appeals to the journalist in me: As a journalist I ask questions – and with this language

I can ask questions also to data.

It’s good to know that there are dialects of the language – a query in PostgreSQL can sometimes be

different than MySQL. Or a function in SQL Server might not exist in SQLite. I use Google for that.

There are tons of pages with examples of queries and I usually find the right wording – or syntax

there.

Another thing to understand is datatypes. If you are familiar with Excel you know that there are no

limitations to what kind of data you put in a column. That column can contain numbers, text and

dates – and usually Excel seems to handle each sort of data separately. SQL databases are more

finicky – you have to determine whether a column – or field – will contain numbers or text or dates.

And that means that if you have a column defined as text, you will not be able to sum the numbers

put in that column. And if you have a column defined as number, it is not possible to put any text in

it.

Some examples of data types:

Integer and real: Integer can’t have any decimals, if they have they are real

Char var and text: All kinds of text

Date and time: Dates and times, so that we can calculate time difference.

One other thing that differs from Excel is that we work in a database – and a database can contain

one or more tables – and the tables can interact, be cross-matched with each other. So, we have to

start by creating our database:

PEOPLE

Click on New database and fill in the name of the database – we can call it DATACLASS.

After that we can either upload a table – or create a table from scatch. The program is asking us to

create our first table. Fill in the empty box, either by writing the following – or by using the tool to

click on Add field for each field:

CREATE TABLE people (

 name text,

 age integer,

 company text,

 yearsatwork integer

);

Click OK once you are done.

 SQL I

 Helena Bengtsson, SVT page 2

Now let’s fill the database. Click on the Execute SQL tab and enter this in the box:

INSERT INTO people VALUES ('Helena', 52, 'SVT', 24);

Click on the play button above the box.

You can then use the sentence and just change the values to enter more people into your table. Just

remember to press “play” between each person.

Once we have some people in our database we can start to ask questions to our data. Delete the

INSERT-command and enter instead:

 SQL I

 Helena Bengtsson, SVT page 3

SELECT * FROM people;

And press play – this is your data. Note that the program tells you how many rows you have in the

bottom of the screen.

You can also select just some of the columns – very useful if you have a wide table with a lot of

columns – or fields.

SELECT name, age FROM people;

We can also sort our data. Delete the semi colon and add “ORDER BY name;” to your query:

SELECT name, age FROM people ORDER by name;

How would you change the sentence to sort by age instead? What if we want the ages sorted

descending, the oldest first?

SELECT * FROM people ORDER by age DESC;

What if we only wanted people from Chicago Tribune? Then we’ll need to add a condition – a WHERE

statement. The only tricky thing is that you have to remember that SELECT comes first, then WHERE

and then ORDER BY. So, let’s change the query one more time:

SELECT * FROM people WHERE company='Chicago Tribune';

Press play to see the rows – note again that the number of rows are listed at the end of the page.

You can of course use WHERE on numbers as well:

SELECT * FROM people WHERE age > 40;

Note that you use quotation marks for text, but no quotes for numbers. So, what if you don’t know

exactly how people spelled their workplace? Then you have to change the syntax a little:

SELECT * FROM people WHERE company like '%Tribune%';

Note that we change the equal sign to a “like” and then included a percent sign before and after the

text.

UK ELECTION

Now, let’s look at some real data. I’ve prepared a file with the result of the 2015 UK Election. The UK

election system works so that you have 650 constituencies and in each constituency, you can have

only one person on the ballot for each party. So, the file contains all the candidates in each

constituency and there is a column called 2015_winner that determines whether the candidate won

the seat or not. Let’s add this table to our DATACLASS database by choosing File in the menu and

then Import and Table from CSV file. Go find the UKElection2015.csv file and click OK to add the file.

We have to change the separator to Tab and click to make sure that the first row contains column

names.

 SQL I

 Helena Bengtsson, SVT page 4

Click OK to import the table. But, we also have to make sure that the configuration is correct. Click on

UKElection2015 and then click Modify table:

 SQL I

 Helena Bengtsson, SVT page 5

Note that we change the datatypes for some of the fields: turnout, votes and rank are INTEGER and

turnout_pct and votes_pct are numeric.

Click ok and now we can start to ask questions to the data. Let’s start by checking that the data is

correct:

SELECT * FROM UKElection2015 WHERE 2015_winner='Y';

How many rows do you get? So how many consistencies did the Labour Party win? Their abbreviation

in Lab. But, in order to find this out, you realize that you need two conditions, just doing WHERE

winning_party='Lab' gives you a strange result. Why?

So, we need to combine the two conditions:

SELECT * FROM UKElection2015 WHERE 2015_winner='Y' AND winning_party='Lab';

And we can do the same for the conservative party:

SELECT * FROM UKElection2015 WHERE 2015_winner='Y' AND winning_party='Con';

But, what if we want to check two parties at once – instead of combining with AND, we want to use a

OR-statement:

SELECT * FROM UKElection2015 WHERE party='Lab' OR party='Soc Lab';

And then we can continue our analysis. So this is some of the questions that come to mind:

- Where were the turnout highest? Lowest?

- Who won with the biggest share of the votes?

- How many women won their seats? How many men?

- What other parties are there, besides Con, Lab, SNP and LD?

How would you construct this last question – there are several ways. One way is to add conditions

one after another, but that can be a little clumsy and hard to understand. Instead there is a very

useful way to express called IN which can be used like this:

SELECT * FROM UKElection2015 WHERE rank=1 AND winning_party NOT IN ('Lab','Con','LD','SNP')

ORDER BY party;

In order to count the number of women who won their seat, it’s of course easy to just do a SELECT-

statement and see how many rows you get:

SELECT * FROM UKElection2015 WHERE rank=1 AND gender='F';

But there is also another way – to use a function, just as you would in Excel:

SELECT count(candidate) FROM UKElection2015 WHERE rank=1 AND gender='F';

We can even use calculations:

SELECT count(candidate)/650.00 FROM UKElection2015 WHERE rank=1 AND gender='M';

Let’s say we want to see which parties that won the election – we can then use a SELECT DISTINCT,

where you only get each name once:

 SQL I

 Helena Bengtsson, SVT page 6

SELECT DISTINCT party FROM UKElection2015 WHERE rank=1;

So, what if we want to know how many constituencies each party won? And we don’t want to run a

SELECT-statement 12 times – so how can we do this? This is when you have to group your

candidates by party. Compare this to sitting at your kitchen table organizing documents in different

piles. You want to take each winner, and put all the Conservatives in one pile, all the Labour

candidates in another pile, and then you count each pile.

SELECT party, count(candidate) FROM UKElection2015 WHERE rank=1 GROUP by party;

Every column that you include in your SELECT has to be added to the GROUP BY, unless you use the

column for calculations. You can of course combine this with ORDER BY – and the order is important:

SELECT party, count(candidate) FROM UKElection2015 WHERE rank=1 GROUP by party ORDER BY

count(candidate);

In SQL you have to but everything in just the correct order. Otherwise it will not work:

SELECT
FROM
WHERE
GROUP BY
ORDER BY

On top of this you can add AND, OR, LIKE and NOT LIKE to your WHERE-clause, and you can use

functions in your SELECT-clause, like count(), but there is also sum() and avg():

SELECT party, count(party), avg(votes_pct)
FROM UKElection2015
WHERE rank = 1
GROUP BY party
ORDER BY count(party) desc ;

We can use an alias to make it easier to understand the result – and we can also limit the number of

rows we get in our result:

SELECT party, count(party), avg(votes) as average
FROM UKElection2015
WHERE rank = 1
GROUP BY party
ORDER BY avg(votes) desc
LIMIT 5;

 SQL I

 Helena Bengtsson, SVT page 7

Let’s add in a second table to our database – the contributions to the candidates. Remember how

we did that? Go to the File-menu and choose Import and then Table from CSV file. Just as the last

time, we have to fix the variables once we have uploaded the table.

Make sure that VALUE has the datatype REAL, otherwise we can’t calculate the amounts that the

candidates received while campaigning. Let’s explore the donations data:

How many candidates have donations?

SELECT CleanName, count(CleanName) as count
FROM UK15_donations
GROUP BY CleanName
ORDER BY count desc;

Per candidate, how many donations, sum and average

SELECT CleanName, count(Value), sum(Value), avg(VALUE)
FROM UK15_donations
GROUP BY CleanName
ORDER BY count(Value) desc;

As you can see some candidates have several donations – the relationship between the results table

and the donations table is a one-to-many relation. One row in the results table relates to many rows

in the donations table. This is something we need to consider when we join on the name. Also, we

can add an alias to a table just the way that we had an alias for a variable earlier. This saves time

when writing your queries:

SELECT CleanName, candidate
FROM UK15_donations a
JOIN UKElection2015 b
ON a.CleanName = b.candidate;

So, what we create when we do a join is really one large table that contains the columns (variables)

we selected from both tables. And what happens if there are several rows in one table that relates

to several rows in the other table? As you can see candidates name from the result table is repeated

for all the rows in the donations table. That means that we can do anything to this large table – as

we could to the single table we worked on before. Using functions like SUM, for instance:

SELECT CleanName, candidate, sum(Value) as total
FROM UK15_donations a
JOIN UKElection2015 b
ON a.CleanName = b.candidate
GROUP BY CleanName
ORDER BY total desc;

What if we want to know who got donations and who was left out? Then we need to use a left join

instead – which means that we get all data from the left table – and only the data that matches from

the right table. So, there will be rows where there is no data in the columns from the right table.

 SQL I

 Helena Bengtsson, SVT page 8

SELECT CleanName, candidate, sum(Value) as total
FROM UK15_donations a
LEFT JOIN UKElection2015 b
ON a.CleanName = b.candidate
GROUP BY CleanName
ORDER BY total desc;

Look through the list and see how there are names on one side not on the other. Compare this to

the result you got earlier. Can we add in a condition to see how many winners that were not getting

any donations?

Lastly, we can also do a group by for party to see the total amount raised by each party, and by

constituency:

SELECT party, sum(Value) as total
FROM UK15_donations a
JOIN UKElection2015 b
ON a.CleanName = b.candidate
GROUP BY party
ORDER BY total desc;

SELECT constituency, sum(Value) as total
FROM UK15_donations a
JOIN UKElection2015 b
ON a.CleanName = b.candidate
GROUP BY constituency
ORDER BY total desc;

I hope that it’s become clear that SQL really is a way to interview data – and just as when you are

interviewing people you have to ask the right questions and listen thoroughly to the answer in order

to ask the correct follow up question.

A tip is to keep a log book of your queries – I copy and paste every statement, including the CREATE

TABLE and INSERT-text into a text document and add in comments and other things so that I can

easily go back and re-create what I once did. Also, great to have when your editor wants to know

how you reached a certain conclusion.

The data: http://www.helenabengtsson.se/material/

Commonly used SQL commands: https://www.codecademy.com/articles/sql-commands

